This poster presents vertical profiles of the atmospheric boundary layer in a pre-montane wet forest in central Costa Rica as it entered the wet season of 2011. Profiles of atmospheric variables, CO$_2$, and particle counts were taken during the six-week (Jun 12 - Jul 24) experiment. The ultimate goal of the project was to determine atmosphere-canopy layer interactions and their potential impact on convective cloud development.

2. Instrumentation

Radiosonde
- Temperature (T), relative humidity (RH), and pressure
- 100 m line, values from 0.5 ms$^{-1}$ descent

LI-COR
- CO$_2$ and water vapor
- 60 s averages every 25 ft

Particle counts
- 0.3-10 μm
- 10 s averaged samples

- Comparisons with 5-min tower values show that the sonde T and RH were well calibrated

3. Diurnal Cycle of Humidity
- Water vapor mixing ratios are well-mixed above 20 m, but show distinct diurnal variations below 20 m
- Low-level humidity increases from sunrise to mid afternoon signify possible transpiration feedback from the forest
- Tower confirms a sharp near-surface increase in humidity from 6 am to 2 pm
- Distinctly different diurnal trend compared to cycle over Amazonian pasture land [Betts et al., 2002]

4. Diurnal Cycle of Temperature
- Potential temperature, θ, indicates nocturnal inversions deepening to 30 m by 3 am and increasing instability during the day with the strongest mixing at 3 pm

5. Diurnal Cycle of Stability
- Equivalent potential temperature, θ_E, shows a potentially unstable boundary layer from 9 am to 3 pm
- θ_E is isothermal later than θ due to decreasing humidity

6. Atmospheric Carbon Dioxide
- During daytime, relative CO$_2$ minima below 20 m and near 55 m may indicate canopy transpiration
- At night, relative maxima occur near the same levels potentially indicating respiration

7. Particle Counts
- During the day particles are well-mixed throughout the boundary layer
- On clear nights particles are well-mixed except when fog layer is present

8. Future Work
- With a longer line (e.g., 300-500 m), the tethered sonde would be significantly higher than the canopy helping to determine if the feedback around 60 m is truly an atmosphere-forest interaction. A mechanical winch would allow for this longer line and provide a consistent rate of ascent and descent. The LI-COR carbon dioxide experiment shows promise in finding a feedback at canopy height and more launches would paint a clearer picture. More particle count measurements will help elucidate fog layer properties.

Acknowledgements
Don Conlee and SOAP for setting up the tethered sonde
All of the Costa Rica REU groups for data sets